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The change in kinetic energy due to the collision of two rigid bodies is investigated. Different ways of 

defining the coefficient of restitution are discussed. It is shown that the Newton definition applied to an 

oblique impact can violate the law of conservation of energy. With the Poisson definition, the calculated 

energy dissipation is always positive, but slightly higher than the experimentally observed value. Energy 

definitions of the coefficient of restitution are more realistic. 

1. STATEMENT OF THE PROBLEM 

IN DYNAMICS, the problem of the collision of rigid bodies reduces to determining the collision 
impulse Z with the ,following conditions: the coordinates of the system are unchanged by the 
collision, and the change in the velocities in an inertial system of coordinates can be described by the 
equations [ 11 

ml AV(G,) = I, mzAV(G,)= -I (1.1) 

J,AW, = r, X I, JzAWz = -c1 X I, ri = GiA (i= 1,2) 

where A is the point of contact of the colliding bodies, mi and Ji are their mass and inertia tensors, 
V(Gi) are the velocities of the centres of mass of each body and Wi are the angular velocities. 

We shall assume that the impulsive forces F = dYdt satisfy the Coulomb laws of friction. If n is the 
unit vector normal to the colliding surfaces at the point A, then the friction is determined by the 
coefficient p and the direction of the relative velocity V, at A: 

v,= v- v,n, vn = (V, n). V=V(G,)+W, Xr1 -V(Cz)-wz Xrz (1.2) 

If V,#O, we have 

dI,/dl” = - I-(er. or = V,/l V, I, Zn = (I, n), I, = I - znIl (I-3) 

but if V, = 0, I moves along the straight line of no slip (see [l]), defined in space I E R3 by Eqs (1.1) 
and (1.2), with V, = 0. 

System (l.l)-(1.3) can be used to construct the relation I(m), and all that is needed to solve the 
collision problem is to fix the value of Z,, at the end of the collision. Newton’s hypothesis of two 
collision phases is conventionally used for this [2]: the first phase, deformation, ends at a value 
Z, = I1 for which V, = 0. The second phase, restitution, ends at Z, = Z2. The coefficient of restitution 
is usually found in one of the following ways [l, 21: either from the formula 

fz =(I +K)I1. O<K < 1 

or from the relation 

C% = - ev,;, OGe<l 

where the indices minus and plus correspond to the beginning and end of the collision. 

(1.4) 

(1.5) 
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In the general case e # K, that is, definitions (1.4) and (1.5) are non-equivalent [3], although the 
incorrect view that they are does exist [4]. Each of the two models of restitution gives a unique 
definition of I for any initial conditions [l, 5, 61. However, in itself this possibility is an insufficient 
basis for deciding on the suitability of a particular model. 

Examples have been constructed [7] which show that (1.5) contradicts the law of conservation of 
energy. In this paper, we examine the possibility of correctly describing a collision with friction. 

2. THE CHANGE IN ENERGY DURING A COLLISION 

During a collision of rigid bodies, the change in their total kinetic energy is equal to the work of 
reaction F applied at the contact point A. The work done in moving dr has the form 

&t = (F, dr) = (Fdt, dr/dr) = (V, dl) (2.1) 

The change in the kinetic energy of the system can be expressed by the curvilinear integral 

AT= X* P’,dl) (2.2) 

where the integration is carried out from the value I = 0 to I = I* of the impact impulse at the end of 
the collision. 

There are certain results that follow from (2.2). 
1. The integral (2.2) is independent of the shape of the path. In fact, relations (1.1) and (1.2) can 

be put in matrix form: 

AV = CI, C=(m;’ +m;‘)E3 +)Iciill 

cii = (J;‘(r, X Ii), rl X 4) + (J;‘(rz X I;), rz X Ii) = ci; 

(2.3) 

11 =(l,O,O), 12 = (0, l,O), Ia = (0, 0, 1). 

where the matrix C is symmetric and positive definite. The integrand in (2.2) can be written in the 
form 

(V,dI) = (v- t CI,dI)=d((v, I) t 0,5(C1,I))=dU(1), U(I)= (v-, I) +o,s(cI, I) (2.4) 

from which the assertion follows. 
2. Substituting (2.4) into (2.2), we have 

AT=CI(I’)-U(O)=(V-,I)+0,5(CI*,I*)=O,5(V-+V+,I*) (2.5) 

Relation (2.5) is known as Kelvin’s formula (see [l]). With its help, it is easy to find the value of 
AT if the impact impulse I* is known. For the collision of two bodies in the general case, no explicit 
dependence of I* on the initial conditions is known, and so Kelvin’s formula does not give a result. 

3. For friction described by (1.3), Eq. (2.2) becomes: 

1, 
AT= I( I’,,+V, 

d/r 
y)dl”.;(I’n -cl/V, l)dl, (2.6) 

0 n 0 

where AT is expressed as a definite integral. Formula (2.6) also holds in the case when V, = 0, since 
then (V, d) = V,dZ,. 

4. Using the identity 

j?-G)” =fixIf (0) +;f’Wdyl 

(2.6) can be reduced to the form 

In dV, 
aT=~dZ~,V~-II,V;,tl(dl--P 

dlV, I 

dl,, 
1 dfn 

0 n 
(2.7) 
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If V,#O, the integrand in (2.7) taking (1.3) and (2.3) into account, can be transformed as 
follows: 

dV d(CI) _ C Uln + I,) -----= 
dl,, df, d/, 

=Cn-/.&B,=b 

dV, dV dV, dV dVn 
-------= e- 
di,, dr, 

,n)=(b,n), -=---n- 
d,, dl,, dr, 

= b - n(b, n), 

dlV,l 

dlt, 
=-+X7=$-($ , V, I= (b, fl,L 

n T n 

i )- 
_L( fir 

--07 
dlV,I 

IV, I din dr, = 
) 

P-8) 

d% 
WI)= -y- 

d I’V, I 

’ dr, 
= (n -@,, b), b=C(n-$,). 

n 

If VT = 0, only the first term in the inner integral in (2.7) is non-zero. The direction vector of the 
line of no slip s is defined by the equation (Cs), = 0, from which we obtain s = C-In. When there is 
no slip, the following expression is obtained for (P(Zn): 

Wn) - 
dV, 4 

--=(Cn,n)t(C- do 
dr, 

,n)=(Cn,n)t(A,Cn)=(Cn,n)t 
n % 

(2.9) 

Taking (2.8) and (2.9) into account and the fact that C is positive definite, the following theorem has 
been proved. 

Theorem 1. The increment of kinetic energy in a collision with Coulomb friction is given by the 
formula 

(2.10) 

where Z, is the magnitude of the normal component of the impact impulse at the end of the collision. 
The function Z is negative when Z, = 0 and increases monotonically when Z, > 0 (since 2 ’ = @ > 0). 

3. ENERGY ANALYSIS OF THE CORRECTNESS OF THE TWO MODELS OF COLLISION 

Since the work of the reaction forces is always non-positive, the energy criterion for the 
correctness of Eqs (1.1) has the form 

AT<‘. (3.1) 

We will verify inequality (3.1) for the two models of collision, described by Eqs (1.3) and (1.4) or 
(1.3) and (1.5). 

1. If the vector V, keeps its positive direction during the collision, d0, = 0, then from (1.3) and 
(2.3), the value of V, is a linear function of Z, . In that case K = e, that is, descriptions (1.4) and (1.5) 
of the end of the collision are equivalent. 

The function Z(Zn) in (2.10) is a linear function of Z, : 

Z(I,d = z(O) + I,(n -@;, Ctn - ~9;)) 
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Since V, = 0 when Z,, = Ii we have Z(Zr ) G 0. Hence 

z(/,) = z(/, + KI, ) < - KZ(O) 

from which we obtain 
I, 1, 

AT = sZ(I,,)dl,, + lZ(/,) d/, G 0 
0 I, (3.2) 

2. If the vector VT changes direction during the collision, model (1.3) and (1.5), with certain initial 
conditions, might lead to the paradoxical inequality AT>0 [7]. 

As an example, consider the two-dimensional collision of a rod of length 2L and the half-space, with which it 
makes an angle cp. System (1.1) takes the form 

mAV(G)=I, J,AW, =r,I, -‘?I,, r, =L ~0s~. rl = L sin up 

The matrix C in (2.3) is such that 

/I l/m t rf lJ3 -r,r,/JIJ, 
c= 

-r,r2YJ, I/m +r:/J, 

If L = 1, m = 1, Ja = l/6, cp = ~14, Jo = 1, e = 0.8, V; = -1, V; = 0.6, then 

4 -3 
c= II I/ -3 4’ 

Z(0) = -1.6. 

As I, changes from 0 to the value I* = 0.086, the tangential component of the velocity decreases to zero, in 
accordance with the equations 

d&/d&, = - 1, AV,=4I,, -3I,= lI,, AV, = - 31, + 4I, = -7I,,. 

When I,, > I*, slip is not renewed, and dI is parallel to the vector of no slip s = C’n = (3/7,4/7), from which 
we obtain the following collision equations for the interval I,>Z*: 

dl,/dI,, = 314. I,=q&-ysI* 

Ah',, = 1.751, + 5.251’. AVr = - V; 

We define the end of the collision from the condition (1.5): e = - 1 + 5.251* + 1.751,, from which we obtain 
I2 = 0.77. We find AT from (2.6): 

I* 
AT=~(V~+7I~-~~Vj-7I~,)dl,+~(V,+~.2~I*+~.l~I~)dI~=0.0~~>0 

0 I’ 

This example shows that it is incorrect to use (1.5) for the end of a collision with friction. 
3. We now consider the model of a collision based on (1.3) and (1.4) in the general case. To do so, 

we will study the second derivative of the function Z in (2.10), that is, the value of d@/dZ,. If V,#O, 
from (2.8) and the Bessel inequality, we obtain the following estimate: 

$=Z(b,-p 
n 

[(h, h) - (b, n)* - (b, or)* I G 0 (3.3) 

There are also two possible cases of a sudden change in the value of Q, when V, becomes zero. In 
the first of these, friction prevents the resumption of slip; according to (2.9), @ = (C-In, n)-‘. 
Immediately before sliding stops 

@ = (Cn, n) - 2~((Cn, 0,) + tiz (Co,. 0,) 

so that the increment A@ is given by the formula 

AQ, = (C-l n, n)-’ - (Cn, n) + 2p(Cn, 0,) - p*(C8,. e,) = (C-In, 8,)-’ - (Cn, n) t (3.4) 

O,W* _, cc _ (CnJV 

+ whe,) 
]2[CeT,e,)4(C-1n,n)- l - (Cn, n) + (ce,. e,)- l (Cn, e,P 

(ce,, 4) 
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If cii are the elements of the matrix C in a basis of vectors n, 8, and n x O,, inequality (3.4) takes 
the form 

A@= 
det I C I 62 

- 43 
--Cl1 

+-_=- 
(Cl 2c2 3 - Cl 2c22j2 

c22c33 d2 c22@22c33- cz?3) 

GO (3.5) 

In the second case of zero V, the friction is insufficient to prevent slip; in this case slip is resumed 
in the direction $ for which 

de, 
- 0, 

dlV,I 

dl,- 
>o 

dZn 
(3.6) 

since, from (2.8), as V,-+O, the magnitude of b - (b, n)n- (b, &)6, tends to zero (see also [5]). We 

Put 

81 =pef, g2 =nXg1. per=glc0s~+g2sin~ 

where the angle 5 defines the direction of sliding immediately before it stops, and 0, = @ after 
sliding has been resumed. For A@, from (3.6), we have 

A@=(n-gl,C(n-gl))-(n-glcosI-g2sin[, C(n-glcost-g2sin[))= (3.7) 

=(cost- 1)[2(Cn,gl)-2(Cgl,g2)3~~+(1+co3~)~(Cg2,g2)-(Cg1,g1))1( 

( Vcos t - 1) (gl sin t/2 + g2 cos E/2, C(g, sin .92 + g2c0s t/2)) < 0 

Collecting together inequalities (3.3), (3.5) and (3.7), we arrive at the following theorem. 

Theorem 2. The derivative of the function Z(Z,) in (2.10) is a non-increasing function of I,. 

Corollary. The model of collision based on Eqs (1.3) and (1.4) satisfies the energy criterion of 
correctness (3.1). 

Proof of corollary. From Theorem 1, Z(Zn) is continuous and increases monotonically, and Z(O)tO, and so 
it has not more than one root if Z, > 0. If Z,, is negative in the segment [0, Z,], then AT< 0, and (3.1) is satisfied. 
If Z(Z,,) = 0 for a certain value Z,,<Z2, the integration interval in (2.1) can be divided into two parts: from 0 to 
I0 and from Z, to Z2. Since Z = V, - p) V, 1, Z(Z,) 6 0 (II is the value corresponding to the end of Newtonian 
deformation), V,, (I, ) = 0 and, therefore, I1 <I0 and 

1, - I, 1, - 1, -Gp =K<l 

10 1, 

(3.8) 

which shows that the interval in which Z is positive is smaller than that in which it is negative (within the 
integration segment). From Theorem 2 it follows that 

Z(I, +x)<-Z(IO -x), O<x<I, 

from which the estimate (3.1) for AT in (2.10) follows for K 6 1. 
We note that the reason for the incorrectness of the model based on (1.5) is that it does not, in general, 

follow from the inequality e< 1 in (1.5) that K is less than one in (1.4) and in (3.8). In particular, for the 
example given before, we have calculated I0 = -0.57(K + 5.251*) = 0.31, from which we find K = 1.48> 1. 

4. ENERGY APPROACH TO DETERMINATION OF THE COEFFICIENT OF RESTITUTION 

Although the kinetic model of the coefficient of restitution (1.5) is correct, an energy approach to 
the two collision phases and the coefficient of restitution is more valid in physical terms. In the first 
of the phases, the elastic strain potential energy accumulates, and is then released during recovery. 

In the collision of solids with smooth surfaces (CL = 0), the energy changes in the two collision 
phases can be expressed by Eq. [ 11. 
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T+ - T,, 

q2 = T- _ To (4.1) 

where To is the lowest value of the kinetic energy during the collision, equal to its value at the end 
of the first phase, and the coefficient of restitution 77 is identical in this case with the coefficients e 
and K. 

Formula (4.1) can be taken as the direct, energy definition of the coefficient of restitution n. 
An extension of (4.1) to the case of collision with friction of the form (1.3) has been proposed in 

[8], on the assumption that there is no tangential compliance of the colliding solids. In that case, 
(2.2) becomes 

12 
AT=$ V,,dI, + 

( 
V,dI, 

0 0: 
(4.2) 

where the second term expresses dissipation due to irreversible strains during friction (external 
dissipation), and the first expresses the work of the normal reaction. With the given notation, the 
coefficient of restitution n* is defined as 

(4.3) 

We will examine the laws of change of the energy in those cases where the effect of tangential 
compliance is substantial (see [9, lo]). In that case, the tangential strains during the collision are not 
irreversible and dissipation is due only to internal processes in the colliding solids. This hypothesis is 
obviously inconsistent’with the tangential stresses defined by (1.3): if V, changes direction during 
the collision, these stresses depend on the relative displacement at the point A. We therefore restrict 
ourselves to the special case where the directions of V, and the impact reaction are unchanged 
during the collision. 

We will represent the impact impulse in the form 

I=oLI’, I’= n-@;, a> 0 

and use Kelvin’s formula (2.5). Since 

AT=%(V-tV’, aI’)=a(V-,I’)=+-,I’)t%a2(I’,C’I’) 

the minimum energy T, is attained for the value a = (Ye, where 

(4.4) 

(45) 

w-91’) 
a0 = - 

(CI’, I’) ’ 
AT, = To __ T- = _i(V-‘1’)2 

2 (CI’,I’) 
(4.6) 

If the total impact impulse is equal to I* = a21’, from (2.5) we have 

AT=?4(V-tV+,azI’)=(?4ai -aoa2)(CI’,I’) 

Substituting (4.6) and (4.7) into (4.1), we obtain for the coefficient of restitution n 

(4.7) 

a2 -a0 
V= 

=_ (V'VI') 

a0 (v-9 1’1 

We have thus proved the following theorem. 

(4.8) 

Theorem 3. If the reaction does not change direction during the collision, the minimum value of 
the kinetic energy To in (4.1) corresponds to disappearance of the projection of the relative velocity 
at the point of contact in that direction. In this case, n is equal to the ratio of the projections of the 
relative velocity on that direction, taken with the opposite sign. 

Note that the definition of the coefficient of restitution (4.8) was used in [ll] in the analysis of automobile 
collision: this coefficient is better from a practical standpoint than either e or K. It was assumed there that q can 
take values between - 1 and 1: negative values of 77 correspond to cases where the kinetic energy decreases over 
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the course of the entire collision. The other limiting case h = 1 corresponds to absolutety elastic collision of 
absolutely rough solids (see [12]). 

Note that the correctness criterion (3.1) is satisfied automatically with the energy definitions of the coefficient 
of restitution. 

5. ANALYSIS OF EXPERIMENTAL RESULTS 

The experimental results of investigations of the collision of a spherical particle on a rough surface are given 
in [8, 13-1.51. In that case, the direction of the reaction during the collision can be taken to be unchanged and 
definitions (l.4), (1.5) and (4.3) are equivalent: K = e = $, but are different from (4.1). One result is that the 
V;: increases with V; for a fixed value of Vi. Thus, an increase in the value of e from 0.45 to 0.63 as V; changes 
from 0 to 5 (m/s> with Vi = - 1 m/s was noted in [13]. The model (1.4) is obviously unsuitable for describing 
this effect. At the same time, from formula (4.8) we obtain the following dependence of the coefficient e on the 
angle of attack cp 

that is, e increases linearly with / V; /. 
Results on the collision of a steel sphere of 1 mm diameter and a steel plate at an initial veiocity of 10 (m/s) 

and angles of attack pD1 = 0, 4p2 = 45” and cps = 75” are given in [14, 151. For the loss coefficient 5 = -AT/T- 
here we obtained the values & = 0.53, & = 0.32 and IJ~ = 0.07, and for the coefficient of impact friction 
f.L = 0.12. 

The coefficient e = K = q* can be calculated in terms of 5 and p from the formula 

1 - f=K’COI’~+ [Sillcp-j&(1 +K)COSy$ (5.2) 

giving 

KS p‘0.69, Kz = 0.87, K, * 1.49 

Note that the value of ~~ does not even reach the range of values allowed in (1.4). 
The coefficient 9 can be calculated from the relation: 

giving 

‘It m‘O.69, ‘t$ =0.6gt r), =&If. 

Consequently, in this case the definition (4.1) is more realistic than the model of collision with friction based 
on (1.4), (1.5) or (4.3). 
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THE SEPARATRIX OF AN UNSTABLE POSITION OF 
EQUILIBRIUM OF A HESS-APPELROT GYROSCOPE-f 
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The motion of a heavy solid with a fixed point whose inertial tensor and the centre of mass (which does not 

coincide with the point of support) satisfy the Hess-Appelrot (HA) conditions is considered. At the zeroth 

value of the areas constant, the gyroscope has an unstable position of equilibrium at which the radius vector 

drawn from the point of support to the centre of mass is directed vertically upwards. Solutions which are 

asymptotic to this position of equilibrium form two-dimensional ingoing and outgoing separatrices which 

satisfy the Hess conditions and are therefore identical (they are paired). The motion close to a paired 

separatrix is considered (when, generally speaking, the particular Hess integral may be non-zero) and 

families of long-period solutions are found. Splitting of the separatrices when an HA gyroscope is perturbed 

is studied. The results obtained are used to investigate the separatrices of a perturbed Lagrange problem for 

a value of the areas constant close to zero. In particular, the occurrence of double-detour homoclinic 

solutions, which leads to the non-integrability of the problem, is demonstrated in the case of a zero value for 

the areas constant. The occurrence of single-detour homoclinic solutions of the perturbed Lagrange 

problem, leading to non-integrability for non-zero values of the areas constant has previously been found 

in [l]. 

1. FORMULATION OF THE PROBLEM 

IN A NUMBER of cases it is convenient to make use of a special system of coordinates [2, 31 in the 
study of a solid with a fixed point, that is, a Cartesian system of coordinates which is rigidly fixed in 
the body where the unit vector directed from the point of support to the centre of gravity has the 

t Prikl. Mat. Mekh. Vol. 56. No. 4, pp. 632-642. 1992 


